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We consider quantum transport of spinless fermions in a one-dimensional �1D� lattice embedding an inter-
acting region �two sites with intersite repulsion U and intersite hopping td, coupled to leads by hopping terms
tc�. Using the numerical renormalization group for the particle-hole symmetric case, we study the quantum
conductance g as a function of the intersite hopping td. The interacting region, which is perfectly reflecting
when td→0 or td→�, becomes perfectly transmitting if td takes an intermediate value ��U , tc�, which defines
the characteristic energy of this interacting model. When td� tc

�U, g is given by a universal function of the
dimensionless ratio X= td /�. This universality characterizes the noninteracting regime where �= tc

2, the pertur-
bative regime �U� tc

2� where � can be obtained using Hartree-Fock theory, and the nonperturbative regime
�U� tc

2� where � is twice the characteristic temperature TK of an orbital Kondo effect induced by the inversion
symmetry. When td��, the expression g�X�=4�X+X−1�−2 valid without interaction describes also the conduc-
tance in the presence of the interaction. To obtain those results, we map this spinless model onto an Anderson
model with spins, where the quantum impurity is at the end point of a semi-infinite 1D lead and where td plays
the role of a magnetic field h. This allows us to describe g�td� using exact results obtained for the magnetization
m�h� of the Anderson model at zero temperature. We expect this universal scaling to be valid also in models
with two-dimensional �2D� leads, and observable using 2D semiconductor heterostructures and an interacting
region made of two identical quantum dots with strong capacitive interdot coupling and connected via a
tunable quantum point contact.
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INTRODUCTION

In quantum transport theory, a nanosystem inside which
the electrons do not interact has a zero temperature conduc-
tance which is given �in units of the conductance quantum
e2 /h for spin polarized electrons, 2e2 /h with spin degen-
eracy� by

g = �tns�EF��2, �1�

where �tns�EF��2 is the probability for an electron at the Fermi
energy EF to be transmitted through the nanosystem. This
Landauer-Büttiker formula can be extended1,2 to an interact-
ing nanosystem, if it behaves as a noninteracting nanosystem
with renormalized parameters as the temperature T→0.
However, this effective noninteracting nanosystem does not
describe only the interacting region, but depends also on the
presence of scatterers which can be outside, in the attached
leads. This non-local aspect of the effective transmission
�tns�EF��2 is characteristic of nanosystems inside which elec-
trons interact and has been studied in 1d models3,4 using the
density matrix renormalization group �DMRG�, and in one-
dimensional �1D�5–7 and two-dimensional �2D� models8 us-
ing the Hartree-Fock �HF� approximation.

In this work, we study how the effective transmission of
a nanosystem with perfect leads is renormalized by local
interactions acting inside the nanosystem, using the numeri-
cal renormalization group �NRG� algorithm9–13 and an
inversion-symmetric interacting model �ISIM�. This model
describes the scattering of spin-polarized electrons �spinless

fermions� by an interacting region �two sites characterized by
an intersite hopping term td, coupling terms tc and an inter-
site repulsion U�. Our study is restricted to the symmetric
case �i.e., the case where ISIM is invariant under particle-
hole symmetry�.

First, we prove that ISIM, which is perfectly reflecting
when the intersite hopping term td→0 or td→�, exhibits a
peak of perfect transmission for an intermediate value
��U , tc� of td. This scale ��U , tc� defines very precisely the
fundamental energy scale of ISIM. HF theory gives correctly
this peak of perfect transmission when U� tc

2, but does not
give it when U exceeds tc

2, showing the existence of a non-
perturbative regime where the use of the NRG algorithm is
required. In this nonperturbative regime,

��U,tc� = 2TK, �2�

where TK is the characteristic temperature of an orbital
Kondo effect induced by the inversion symmetry.

Second, we show that the zero-temperature conductance g
is given by a universal function g�X� of the dimensionless
coordinate X= td /�. This function g�X� is independent of the
choice of tc and U as far as td� tc

�U. When td��,

g�X� = 4�X + X−1�−2. �3�

When �� td� tc
�U, the conductance g�X� can be described

by another function
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g�X� � sin2���2.02 −
0.74

ln�2.8X�
+ . . .�	 , �4�

which is related to an exact result obtained by Tsvelick and
Wiegmann14,15 with Bethe-Ansatz for the magnetization of
the Anderson model at zero temperature. When td exceeds
tc

�U, the interaction becomes irrelevant, � is given by its
noninteracting value tc

2, X= td / tc
2 and g�X�=4�X+X−1�−2

again. The conductance g is one example of the physical
properties of ISIM which are given by universal functions of
td /� at zero temperature. The low-energy effective one-body
excitations provide another example, for which we show the
corresponding universal curves.

In order to obtain these universal functions, it is useful to
notice that the inversion symmetry of ISIM gives rise to a
pseudospin, allowing to exactly map this 1D spinless model
onto an Anderson model with spins where the intersite hop-
ping td plays the role of a magnetic field, the quantum impu-
rity being at the end point of a single semi-infinite chain.
Therefore, the behavior of ISIM as a function of td is related
to the behavior of the Anderson model as a function of an
applied magnetic field h.

The paper is organized as follows: Section I introduces
universal aspects which characterize the Anderson model and
are relevant for quantum dots where spin or orbital Kondo
effects occur. The studied spinless model with inversion
symmetry �ISIM� is defined in Sec. II and mapped onto an
Anderson model with magnetic field in Sec. III. A second
transformation is performed in Sec. IV, based on the usual
logarithmic discretization of the energy band of the leads, to
get the final model used for the NRG study. The study is
restricted to the case with particle-hole symmetry in Sec. V.
The low-energy excitations are first considered as a function
of the temperature in Sec. VI. When U���, �= tc

2 being the
level width of the scattering region, the 3 fixed points 
free
orbital �FO�, local moment �LM�, and strong coupling �SC��
characterizing the Anderson model without field are recov-
ered when td is small enough. As td increases, the LM fixed
point characterizing the model above the Kondo temperature
TK disappears. In Sec. VII, we study the low-energy excita-
tions of ISIM as a function of td in the limit T→0. We find
that they can always be described by a set of effective one-
body excitations, showing that a continuous line of free-
fermion fixed points goes from the SC limit of the Anderson
model �td=0� toward a new simple limit, the polarized or-
bital �PO� fixed point �td→��. Between the SC and PO fixed
points, we show in Sec. VIII that there is always an interme-
diate value ��U , tc� of td for which ISIM is perfectly trans-
mitting. ��U , tc� defines the fundamental energy scale of
ISIM. In Sec. IX, a simple method for calculating g�td� from
the effective one body excitations characterizing ISIM when
T→0 is introduced. Using this method, we give in Sec. X
the main result of this work, i.e., if one uses the dimension-
less ratio X= td /�, the physical properties �conductance or
effective one-body spectra� are universal and independent of
tc and U as far as td� tc

�U. This universal regime is divided
in a first regime where the system is not very far from the SC
fixed point �td��, Sec. X A� and where g�X�=4�X+X−1�−2,
followed by a second regime where g�X� is given by another

universal function ��� td� tc
�U, Sec. X B�. In the equivalent

Anderson model, this second regime is characterized by the
occurrence of a magnetic moment. When td� tc

�U, the in-
teraction U becomes irrelevant and g�X�=4�X+X−1�−2 with
X= td / tc

2 �Sec. X C�. In Sec. XI, we show that HF theory
gives the values of g obtained from the NRG spectra and the
scale ��U , tc�, if U does not exceed tc

2. In contrast, HF theory
fails to give perfect transmission if U� tc

2, showing the exis-
tence of a nonperturbative regime for ISIM. To obtain � in
the nonperturbative regime, we first revisit in Sec. XII a
method giving g from the difference of occupation numbers
between the even and odd orbitals of the nanosystem. This
method based on Friedel sum rule �FSR� contains an as-
sumption. If ISIM is near the SC fixed point �td��, nonper-
turbative regime�, this assumption turns out to be justified. In
that case, g�td� can be obtained from the impurity magneti-
zation m�h� of the equivalent Anderson model with a mag-
netic field h at zero temperature. Exact results giving m�h�
are reviewed in Sec. XIII for the Anderson model. Using
those results, we show in Sec. XIV that ��U , tc�=2TK in the
nonperturbative regime, TK being the characteristic tempera-
ture of the orbital Kondo effect exhibited by ISIM when U
� tc

2. Moreover, a fit inspired from the exact behavior of m�h�
in the local moment regime is used for describing the uni-
versal function g�X� when �� td� tc

�U. Eventually, we sum-
marize in Sec. XV the universal aspects obtained using a
simple 1D model, and we conjecture that they can be ex-
tended to 2D models and observed in 2D semiconductor het-
erostructures, where the nanosystem would consist of two
identical quantum dots coupled by a quantum point contact.

I. ANDERSON MODEL, KONDO PHYSICS,
QUANTUM DOTS, AND UNIVERSALITY

The Anderson model describes a single site with Hubbard
interaction U coupled to a three-dimensional �3D� bath of
conduction electrons. This is one of the quantum impurity
models,13 which were introduced to study the resistance
minimum observed in metals with magnetic impurities. The
Kondo problem refers to the failure of perturbative tech-
niques to describe this minimum. The solution of these mod-
els by the NRG algorithm, a nonperturbative technique9–13

introduced by Wilson, is at the origin of the discovery of
universal behaviors which can emerge from many-body ef-
fects. Without magnetic field h and with particle-hole
symmetry,10 the Anderson model maps onto the Kondo
Hamiltonian if U���, �	 tc

2 being the impurity-level width.
In that case, there is a nonperturbative regime where the
temperature dependence of physical observables such as the
impurity susceptibility is given by universal functions of
T /TK, TK being the Kondo temperature. If U���, the im-
purity susceptibility can be obtained by perturbation theory.
Universality characterizes not only the behavior of the
Anderson model as a function of the temperature T, but also
its behavior at T=0 as a function of an applied magnetic field
h. Using the Bethe-Ansatz, Tsvelick and Wiegmann14,15 have
obtained for the magnetization m�h� a universal function of
the dimensionless variable h /TK when T→0.

The possibility to design artificial magnetic impurities in
nanoscale conductors has opened16,17 a second era for quan-
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tum impurity models. Measuring the conductance g of quan-
tum dots created by electrostatic gates, in a 2D electron
gas16–18 or in carbon nanotubes,19 one obtains values which
can be on universal curves as functions of T /TK if there is a
Kondo effect. Moreover, quantum dots open the possibility
to study the Kondo effect as a function of the coupling be-
tween the impurity and the continuum of conduction elec-
trons, and not only as functions of the temperature and of the
magnetic field. As pointed out in Ref. 20, this gives the op-
portunity to do the spectroscopy of the Kondo problem. No-
tably, the weak to strong coupling crossover can be studied
by varying gate voltages, when metallic gates are used for
creating quantum dots. Kondo physics was first related to the
antiferromagnetic coupling between a magnetic impurity and
the spin of the host’s conduction electrons. This is why
Kondo physics was first expected and seen16,17 in quantum
dots with odd numbers of electrons, weakly coupled to leads.
However, it was realized that a localized electronic state
coupled to a continuum can give rise to a large class of
different Kondo effects, including the original spin-1/2
Kondo effect, various orbital Kondo effects and the SU�4�
Kondo effect occurring if a spin Kondo effect co-exists with
an orbital Kondo effect.

In this framework, ISIM is a model which can be used for
describing the quantum conductance of spin polarized elec-
trons in an inversion-symmetric double-dot setup with strong
capacitive interdot coupling, as a function of the interdot
hopping td. For such a setup, td could be varied by electro-
static gates if the two dots are coupled by a quantum point
contact, and our study describes the effect of this coupling
upon the orbital Kondo effect induced by the inversion sym-
metry. Eventually, universal aspects of many-body phenom-
ena characterize not only equilibrium quantum transport, but
also nonequilibrium quantum transport which occurs in the
presence of a large source-drain bias Vsd. Measures of the
conductance18 and of the current noise19 of Kondo dots have
recently confirmed the expected universality if one measures
T or Vsd in units of TK. We describe here another universal
aspect of linear quantum transport, i.e., the quantum conduc-
tance of a spin polarized inversion symmetric double-dot
setup should be a universal function of the dimensionless
interdot hopping td /TK when T→0.

Kondo physics is also at the origin of spinless models, as
the interacting resonant level model21 �IRLM�, which de-
scribes a resonant level �Vdd†d� coupled to two baths of spin-
less electrons via tunneling junctions and an interaction U
between the level and the baths. IRLM, which is now used
for studying nonequilibrium quantum transport,21,22 is related
to the Kondo model, the charge states nd=0,1 playing the
role of spin states. Both ISIM and IRLM are inversion sym-
metric. However, the Zeeman field acting on the impurity is
played by the hopping term td for ISIM, and by the site
energy Vd for IRLM. Therefore, ISIM does not transmit the
electrons without “field,” while IRLM does. Though we
study in this work a finite density of particles, let us mention
that the two-particle scattering problem has been solved23 for
ISIM.

II. INVERSION-SYMMETRIC INTERACTING MODEL

The ISIM model is sketched in Fig. 1 and consists of a 1D
tight binding lattice �hopping term th� where a finite density

of spin polarized electrons �spinless fermions� can be scat-
tered by a central region made of 2 sites of potential VG, with
an internal hopping term td, and 2 coupling terms tc. The
difficulty comes from the presence of a repulsion of strength
U which acts if the two sites of the central region are occu-
pied.

The ISIM Hamiltonian reads

H = Hns + Hc + Hl, �5�

where the Hamiltonian of the central region �the interacting
nanosystem� is given by

Hns = − td�c0
†c1 + c1

†c0� + VG�n0 + n1� + Un0n1. �6�

cx
† and cx are spinless fermion operators at site x and nx

=cx
†cx. The coupling Hamiltonian between the nanosystem

and the leads reads

Hc = − tc�c−1
† c0 + c1

†c2 + H.c.� , �7�

while the leads are described by a Hamiltonian

Hl = − th �
x=−�

�

��cx
†cx+1 + H.c.� , �8�

where �� means that x=−1,0 ,1 are omitted from the sum-
mation.

III. EQUIVALENT ANDERSON MODEL
WITH MAGNETIC FIELD

Because of inversion symmetry, one can map ISIM onto a
single semi-infinite 1D lattice where the fermions have a
pseudospin and where the double-site nanosystem becomes a
single site with Hubbard repulsion U at the end point of a
semi-infinite lattice. This equivalent Anderson model is
sketched in Fig. 2. To show this mapping, we define the
fermion operators

ae,x
† = �c−x+1

† + cx
†�/�2, �9�

ao,x
† = �c−x+1

† − cx
†�/�2 �10�

which create a spinless fermion in an even/odd �e/o� combi-
nation of the orbitals located at the sites x and −x+1 of the
original infinite lattice, �or a fermion with pseudospin 

=e /o in the transformed semi-infinite lattice�. ae/o,x are the
corresponding annihilation operators. Expressing Hns in
terms of these new operators, one gets

−th−th −th−th

VG VG

−td −tc−tc

U

FIG. 1. �Color online� Studied setup �ISIM� where spin polar-
ized electrons �spinless fermions� can be scattered by a nanosystem
made of the 2 red sites �energy VG, intersite repulsion U and an
internal hopping td�. The nanosystem is embedded by coupling
terms tc into a 1D lattice �hopping term th�.
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Hns = �VG − td�ne + �VG + td�no + Uneno, �11�

where n
=a
,1
† a
,1 and where the pseudospin “e” �“o”� is

parallel �antiparallel� to the “Zeeman field” td. In terms of the
operators

dk,

† = �2/��

x=2

�

sin
k�x − 1��a
,x
† �12�

creating a spinless fermion of pseudospin 
 and momentum
k in the transformed semi-infinite 1D lead, the lead and the
coupling Hamiltonians can be written as

Hl = �
k,


�knk,
, �13�

and

Hc = �
k,


V�k��a
,1
† dk,
 + H.c.� , �14�

where the k-dependent hybridization

V�k� = − tc
�2/� sin k , �15�

yields an impurity level width at EF which is given by

� =
tc
2

th
sin kF, �16�

nk,
=dk,

† dk,
 and �k=−2th cos k.

One can see that ISIM is identical to an Anderson model
with a local magnetic field td, which acts on the impurity
only and gives rise to the Zeeman terms �td in Eq. �11�.
Therefore, in the limit td→0, ISIM must exhibit an orbital
Kondo effect if the equivalent Anderson model can be re-
duced to a Kondo model. The fact that the impurity is not
coupled to a 3D bath of conduction electrons, but only to a
single semi-infinite 1D bath changes only the proportionality
factor of the hybridization function. We underline that the
dimensionality of the considered baths of conduction elec-
trons does not play a significant role in Kondo physics, such
that the results of this study should hold if one attaches 2D
bars or 3D strips instead of 1D leads to the same nanosys-
tem.

IV. CORRESPONDING NRG CHAIN

ISIM can be studied using the NRG procedure10–13 devel-
oped by Wilson for the Anderson model after minor changes.
First, we assume V�k��V�kF=� /2� and, using standard
NRG procedure, we divide the conduction band of the elec-
tron bath into logarithmic sub-bands characterized by an in-
dex n and an energy width

dn = 
−n�1 − 
−1� . �17�

Throughout this paper, we use the discretization parameter

=2 and we take th=1. Within each sub-band, we introduce
a complete set of orthonormal functions �np���, and expand
the lead operators in this basis. Dropping the terms with p
�0 and using a Gram-Schmidt procedure, the original 1D
leads give rise to another semi-infinite chain with nearest-
neighbor hopping terms, each site n representing now a con-
duction electron excitation at a length scale 
n/2kF

−1 centered
at the impurity. In this transformed 1d model shown in Fig. 3
and hereafter called the NRG chain, the impurity and the N
−1 first sites form a finite chain of length N, which is de-
scribed by the Hamiltonian HN, the successive sites n and
n+1 being coupled by hopping terms xn, which decay expo-
nentially as n→� and are given by

xn = 
−n/2 �1 + 
−1��1 − 
−n−1�
2��1 − 
−2N−1��1 − 
−2N−3�

. �18�

The impurity is coupled to the first site of the NRG chain by
a hopping term

tc� =
tc

�8�3�1/4�log�
�
 + 1�

 − 1

�	2

. �19�

Since the length N is related10 to the temperature T by the
relation

kBT �
1 + 
−1

2

−�N−1�/2, �20�

N can be interpreted as a logarithmic temperature scale �N
	−log T�, the large values of N corresponding to tempera-
tures T small compared to the bandwidth th.

The NRG chain coupled to the impurity is iteratively di-
agonalized and rescaled, the spectrum being truncated to the
Ns first states at each iteration �We use Ns=1024 in this
study�. The behavior of ISIM as T decreases can be obtained

−th −th

VG ± td

Un↑n↓
−tc

FIG. 2. �Color online� Equivalent Anderson model: Electrons
with a pseudospin �↑=even, ↓=odd� are free to move on a semi-
infinite chain �hopping term th� with a quantum impurity �red site�
attached �hopping term tc� to its end point. The intersite ISIM in-
teraction becomes a Hubbard interaction Un↑n↓ between impurity
orbitals of different pseudospins. The impurity potential VG has
now a Zeeman term �td.

x0 x1 x2

VG ± td

Un↑n↓
−t′c

FIG. 3. �Color online� Corresponding NRG chain: The quantum
impurity �red site� is now coupled via an hopping term tc� 
Eq. �19��
to a 1D lattice, where the sites are labeled by n and describe con-
duction electron excitations of length scale 
n/2kF

−1 centered on the
impurity. The successive sites are now coupled via hopping terms

Eq. �18��, which fall off as 
−n/2. Used discretization parameter

=2.
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from the spectrum of HN as N increases, the bandwidth of HN
being suitably rescaled at each step. A fixed point of the
renormalization group �RG� flow corresponds to an interval
of successive iterations N of the same parity, where the res-
caled many-body excitations EI�N� do not vary. The fixed
point is therefore characterized inside this interval by two
spectra, one characterizing the even values of N, the other
the odd values. If it is a free fermion fixed point, EI=����,
the �� being effective one-body excitations, and the interact-
ing system behaves as a noninteracting system with renor-
malized parameters td˜ and tc˜ near the fixed point. Moreover,
if one has free fermions when T→0, the conductance g can
be directly extracted from the NRG spectrum.

V. RESTRICTION TO THE SYMMETRIC CASE

Using the NRG procedure, ISIM can be studied as a func-
tion of T for arbitrary values of its 6 bare parameters U, EF,
VG, td, tc, and th. Hereafter, we take EF=0 and VG=−U /2.
This choice makes ISIM invariant under particle-hole sym-
metry, with a uniform density 
nx�=1 /2. Very often, the in-
finite bandwidth limit �th→�� is assumed in the theory of
quantum impurities. This corresponds to magnetic alloys
where the bandwidth of the conduction electrons is large
compared to the other energy scales of the model. In this
study, we take th=1, which defines the energy scale and al-
lows us to consider also mesoscopic regimes where the
scales U, td, tc or VG can exceed th. In that case, Eq. �16�
gives for the levels �td of the isolated non-interacting nano-
system a width

� = tc
2, �21�

when the nanosystem is coupled to leads. Our motivation to
restrict the study to the symmetric case is not justified by
physical considerations, but mainly for the sake of simplicity,
restricting the RG flow into a space of 3 effective parameters

�Ũ , tc˜ , td˜� only. Doing so, we proceed as Krishna-murthy,
Wilkins and Wilson for the Anderson model, studying first
the symmetric case10 before considering later the asymmetric
case11 and its characteristic valence-fluctuation regime.

VI. ROLE OF THE TEMPERATURE T

When td=0, ISIM is an Anderson model, which has the
RG flow sketched in Fig. 4 for the particle-hole symmetric
case. At low values of N �high values of T�, ISIM is located
in the vicinity of the unstable free orbital �FO� fixed point.
As N increases �T decreases�, ISIM flows toward the stable
strong-coupling �SC� fixed point.

If the interaction is weak �U����, its effects can be
described by perturbation theory, the flow goes directly from
the FO fixed point toward the SC fixed point, and there ap-
pears no orbital Kondo effect for td→0.

If the interaction is large �U����, the flow can visit an
intermediate unstable fixed point—the local moment �LM�
fixed point—before reaching the SC fixed point. In that case,
ISIM is identical to a Kondo model characterized by a tem-
perature TK and by universal functions of the ratio T /TK. For
td=0, ISIM is on the FO fixed point when tc

�U�T, exhibits

a local moment when TK�T� tc
�U and reaches the SC fixed

point when T�TK. While the Hartree-Fock theory qualita-
tively describes24 the local moment at high temperatures
TK�T� tc

�U, it breaks down at low temperatures �T�TK�,
where the effect of the interaction becomes nonperturbative
and gives an orbital Kondo effect.

In Fig. 5, the first many-body excitations EI of ISIM are
given for increasing even values of N for td=0. Since U
��tc

2, one gets 3 plateaus corresponding to the 3 expected
fixed points. Inside the plateaus, the spectra are free-fermion
spectra, which are described in Ref. 10. However, between
the plateaus, there are no free fermion spectra and EI
�����. As td increases �Fig. 5�, the LM plateau decreases

LM

~
U

~
t
d

PO

FO

SC

~
t
c

FIG. 4. Line of free fermion fixed points 
thick solid line in the
plane �td˜ , tc˜��, characterizing ISIM when T→0 as td increases from
td=0 �SC fixed point� toward td→� �PO fixed point�. The FO, LM,
and SC free fermion fixed points and the RG trajectories13 followed

by ISIM as T decreases for td=0 are indicated in the plane �Ũ , tc˜�,
for ���U �dashed� and ���U �solid�.

(c)td = 5 ∗ 10−3

0

0.5

1
EI

0 20 40 60

N

(b)td = 10−6

0

0.5

1
EI

FO

(a)

LM SC

td = 0

0

0.5

1
EI

FIG. 5. �Color online� Many body excitations EI as a function of
N �even values� for U=0.005 and tc=0.01. For �a� td=0, one can
see the 3 successive plateaus �FO, LM, and SC fixed points� of the
Anderson model. As td increases 
�b� and �c��, the LM plateau
shrinks and disappears when td� td

�= tc
�U.

UNIVERSAL SCALING OF THE QUANTUM CONDUCTANCE… PHYSICAL REVIEW B 81, 085108 �2010�

085108-5



and vanishes when td reaches a value �tc
�U.

VII. ROLE OF THE INTERNAL HOPPING AT T=0

Let us study how the many-body levels EI given by the
NRG algorithm depend on the internal hopping term td in the
limit where N→�, i.e., in the limit where the temperature
T→0.

When td=0, one has the SC limit10 of the Anderson model
where the impurity is strongly coupled to its first neighbor in
the NRG chain �the conduction-electron state at the impurity
site�. The impurity and this site form a system which can be
reduced to its ground state �a singlet�, the N−2 other sites
carrying free-fermion excitations ��, which are independent
of that interacting system. This SC limit of the Anderson
model without field is sketched in Fig. 6 �upper part�. In the
Kondo model, the site directly coupled to the impurity de-
scribes the cloud of conduction electrons which fully screens
the magnetic moment of the impurity.

When td→�, the impurity occupation numbers 
ne�→1
and 
no�→0, and the N−1 other sites of the NRG chain are
independent of the impurity. This limit is sketched in Fig. 6
�lower part�. We call this limit ‘‘polarized orbital �PO�,’’
since it coincides with the FO fixed point of the Anderson
model, except that the spin of the free orbital is not free, but
fully polarized in our case.

The EI�td� correspond to many-body excitations of effec-
tive noninteracting spectra when td→0 and td→�. When td
varies between those 2 limits, the NRG algorithm continues
to give many-body excitations EI�td� compatible with the
free-fermion rule EI�td�=�����td�, allowing us to extract
one-body excitations ���td� for intermediate values of td. We
conclude that there is a continuum of effective noninteracting
spectra, which describe the EI as td varies in the limit N
→�, i.e., the T→0 limit of ISIM is given by a continuum
line of free-fermion fixed points. This line is sketched in Fig.
4. Having always free fermions as td varies means that the
T=0 scattering properties of an interacting region embedded

inside an infinite noninteracting lattice are those of an effec-
tive noninteracting system with renormalized parameters, in
agreement with the DMRG study of the persistent current
given in Ref. 2. We underline that those effective noninter-
acting spectra describe the T=0 limit, while a description of
the low-temperature dependence of the conductance requires
effective Hamiltonians of Landau quasiparticles with re-
sidual quasiparticle interactions. Such a Fermi liquid theory
has been proposed by Nozières. In the case of the Anderson
model, it has been developed in Ref. 25 without magnetic
field �td=0� and in Ref. 26 with magnetic field �td�0�. How-
ever, the quasiparticle interaction comes into play at finite
temperatures only and a residual interaction is not necessary
for describing the EI as a function of td in the limit N→�.

Figure 7 shows these first one-body excitations �� as a
function of td extracted from the EI�td�, calculated with U
=0.1 and tc=0.1. The pseudo-spin degeneracy being broken
by the “magnetic field” td�0, the first �second� one-body
excitation �1 ��2� carries, respectively, an even �odd� pseudo-
spin if N is even. This is the inverse if N is odd, �1 ��2�
carrying, respectively, an odd �even� pseudospin.

VIII. PERFECT TRANSMISSION AND CHARACTERISTIC
ENERGY SCALE

Since the free part of the NRG chain has N−2 sites for
N→� and td→0 �SC fixed point�, while it has N−1 sites for
td→� �PO fixed point�, there is a permutation of the ���td�
as td increases: the ���td→0� for N even become the ���td
→�� for N odd and vice versa. This permutation is shown in
Fig. 7. Since for N→� there is a permutation between the
even and odd spectra as td increases, there is a value of td for
which the ���td� are independent of the parity of N. This
value defines very precisely the characteristic energy scale
��U , tc� of ISIM. Because of particle-hole symmetry, the
nanosystem �the impurity of the NRG chain� is always occu-
pied by one electron. Binding one electron of the leads with
this electron reduces the energy when td��, while it in-
creases the energy when td��. For td=�, it is indifferent to
bind or not an electron of the lead with the one of the nano-

td = ∞ Polarized orbital

Free fermions

td = 0 Strong coupling

Singlet state Free fermions

FIG. 6. �Color online� NRG chain in the SC limit �upper figure�
and in the PO limit �lower figure�. When td→0, the impurity �red
dot� and the first site of the NRG chain form a system in its singlet
ground state decoupled from the other sites, which carry free-
fermion excitations. When td→�, the even �odd� orbital of the
impurity is occupied �empty� and the other sites carry free-fermion
excitations. Therefore, there is a permutation of the parity of the
length of the free part as td increases. When the excitations of the
free part are independent of this parity, td=� and g=1.
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FIG. 7. �Color online� One-body excitations ���td� 
extracted
from the EI�N→� , td�� for U=0.1 and tc=0.1 �left scale�. The solid
�dashed� lines correspond to NRG chains of even �odd� length N.
Conductance g�td� extracted from ���td� using Eq. �27� �thick red
curve, right scale�. For td=�, the �� are independent of the parity of
N and g=1.
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system, making ISIM perfectly transparent. This gives the
proof that, for all values of U and tc, there is always a value
� of td for which the interacting region becomes perfectly
transmitting and

g�td = ��U,tc�� = 1. �22�

The argument is reminiscent to that giving the condition for
having a perfectly transparent quantum dot in the Coulomb
blockade regime: td in our case, the gate voltage in the other
case, have to be adjusted to values for which it costs the
same energy to put an extra electron outside or inside the dot.
The quantum conductance g can be extracted from the NRG
spectra. Using a method explained in the following section,
we have calculated g�td�. The result shown in Fig. 7 confirms
that g=1 precisely for the value � of td for which the N
→� low-energy excitations are independent of the parity of
N.

IX. FREE-FERMION SPECTRA AND QUANTUM
CONDUCTANCE

As pointed out in previous works,27–29 the quantum con-
ductance g can be directly extracted from the NRG spectra.
Let us consider an NRG chain of even length N→�. When
td=0, the one body spectrum is identical for the two pseu-
dospins. A hopping td�0 breaks the pseudospin degeneracy
and opens a gap ���td� �indicated in Fig. 7� between excita-
tions of opposite pseudospins. For free fermions in the limit
T→0, the asymptotic electron states of ISIM are stationary
waves with even �odd� phase shifts �e,o�k� induced by the
scattering region

�e�k,p� 	 cos
k�p − 1/2� − �e�k�� , �23�

�o�k,p� 	 sin
k�p − 1/2� − �o�k�� . �24�

The shifts �e,o�k� of the scattering phases and ��e,o�k� of the
energy levels are proportional for each pseudospin. This can
be shown by taking a finite size L for ISIM, quantizing the
momenta ke,o�n�=�n /L+�e,o�k� /L and using the dispersion
relation ��k�=2 cos�k�. This yields

�� = ���e − ��o� 	 ��ke − �ko� 	 ��e − �o� . �25�

In the limit L→�, the quantum conductance g�td� of ISIM
can be expressed as a function of the scattering phase shifts,

g�td� = sin2
�e�td� − �o�td�� . �26�

From Eqs. �25� and �26�, one eventually obtains the relation
which allows us to extract g from the NRG spectra,

g�td� = sin2��
���td�

���td → ��� . �27�

The proportionality factor between ���td� and �e�td�−�o�td�
has been determined from the condition that g→0 �for �e
−�o→�� when td→�. Equation �27� describes a quantum
conductance, which vanishes when td→0 and when td→�,
and reaches the unitary limit for an intermediate value
��U , tc� of td.

Let us check that the NRG algorithm and Eq. �27� give us
the correct behavior for the conductance g in the noninter-
acting limit where it is straightforward to solve the scattering
problem. One obtains

g�U = 0� = 4� td

tc
2 +

tc
2

td
�−2

. �28�

The ���td� given by the NRG algorithm for U=0 are shown
in Fig. 8 with the corresponding values of g obtained from
Eq. �27�. One can see that the behavior of g given by the
NRG algorithm and Eq. �27� reproduces the correct behavior
given by Eq. �28� in the noninteracting limit.

X. UNIVERSAL PROPERTIES OF ISIM

In Fig. 9, the conductance g extracted from the NRG
spectra using Eq. �27� is given as a function of td for a
coupling term tc=1 and many values of U. The larger is U,
the smaller is the characteristic scale ��U�. Figure 9 seems to
indicate that the left sides of the transmission peaks are sim-
ply translated to lower values of td as U increases. This is
confirmed in Fig. 10�a� where g is given as a function of the
dimensionless scale td /�, � being obtained from the criterion
g�td=��=1. The curves g�td /�� obtained for tc=1 are shown
in Fig. 10�a�, while the curves obtained for tc=0.1 and tc
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g

FIG. 8. �Color online� �� and g as a function of td / tc
2 without

interaction �U=0�. The values of g extracted from the NRG spectra
�red cross� coincide with the exact values 
Eq. �28�—red line�.
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td

FIG. 9. �Color online� g�td� extracted from the NRG spectra for
tc=1 and many values of U. Increasing U shifts the transmission
peaks to smaller values of td. The curves correspond, respectively,
to U=0 �red curve�, 5,10,15,20,25,30, and 35.
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=0.01 have been added in Fig. 10�b�. These figures show the
main result of this study, i.e., when td is not too large, g is
given by a universal function of td /��U , tc�. This function is
independent of the values taken for U or tc. Since g�td� has
been directly extracted from the free fermion NRG spectra,
the NRG spectra must be also given by universal functions
of td /��U , tc�, independent of the values of U and tc. This is
shown in Fig. 10�c� �tc=1� and in Fig. 10�d� �tc
=1,0.1,0.01�, where the first excitations �� obtained for
NRG chains of large even length N are plotted as a function
of td /�.

The values of ��U , tc� used in Fig. 10 are given in Fig. 11.
If one decreases the temperature T in the Anderson model
without magnetic field, it has been shown in Ref. 10 that the
interaction effects remain perturbative when U��� while
they become nonperturbative when U���. Since the level
width �= tc

2 for the nanosystem used in ISIM at half-filling,
we give the dimensionless scale � /U as a function of U / tc

2 in
Fig. 11. One can see that � /U has a slow decay followed by
a faster decay, with a crossover around an interaction thresh-
old consistent with the interaction threshold �� characteriz-
ing the perturbative-nonperturbative crossover in the Ander-
son model. For ISIM, this suggests that the interaction
effects upon g are perturbative when U���, and nonpertur-
bative when U���. However, the universal behavior of
g�td /�� is not restricted to the nonperturbative “Kondo” re-
gime, but characterizes also the perturbative regime.

A. Universality near the SC limit (td��)

The universal regime can be divided into two parts. The
first one begins at td=0 in the vicinity of the SC fixed point
and ends at td=�. In this SC regime, g behaves as without
interaction, but with a renormalized level width 
tc

2

→��U , tc��. As shown in Fig. 10, all the curves g�td /�� are
on a single universal curve when td��, independent of the
values of U and tc. Since one of those curves �the red one�

(c)
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FIG. 10. �Color online� �a�: g as a function of td /� for tc=1 and many values of U. � has been determined from the criterion g�td=��
=1. The larger is U, the larger are the values of td /� where g decays. The curves correspond respectively to U=0 �red curves� and U=5, 10,
15, 20, 25, 30, and 35 �black curves�. �b�: g as a function of td /�. To the data �black curves� calculated taking tc=1 and shown in �a�, we have
added the data calculated taking tc=0.1 and U=0 �red curve�, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4 �green dashed curves� and taking
tc=0.01 and U=0 �red curve�, 0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, and 0.0035 �blue dotted curves�. �c�: First one body excitations
�� for N even as a function of td /�. Same values of tc and U as in �a�. �d�: �� for N even as a function of td /�. Same values of tc and U as
in �b�.
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FIG. 11. �Color online� Characteristic scale ��U , tc� as a func-
tion of U and tc. The values of ��U , tc� /U obtained from the con-
dition g�td /��=1 and used in Fig. 10 are plotted as a function of
x=U / tc

2�+�. The solid blue line y�x�=0.728�2 / ��x�exp− ��x /8� fits
the data in the nonperturbative regime and corresponds to the rela-
tion �=2TK with Tk=0.364�2tc

2U /� exp− ��U /8tc
2�.
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corresponds to the noninteracting limit U=0, the universal
curve for td�� is given by Eq. �28� where td is measured in
units of �, instead of tc

2,

g�td,U,tc� = 4� td

��U,tc�
+

��U,tc�
td

�−2

. �29�

B. Universality around a LM limit (�� td� tc
�U)

The universal regime persists when td exceeds �. While
g�td /�� decays immediately after the transmission peak if
U=0, g�td /�� begins to follow a new part of the universal
curve if U�0. This new part is not given by Eq. �29�, and
ceases when a faster decay occurs. The larger is U, the larger
is the interval of values of td /� where g�td /�� follows the
slow decay of the universal curve �see Fig. 10�. To describe
this slow decay, one can use exact results which give the
magnetization m�h� of the Anderson model at T=0 as a func-
tion of the magnetic field h. This will be done after a study of
the relation between g�td� and m�h�.

Let us just note now that the singlet state of the SC limit
could be broken either if the temperature T or the “Zeeman
energy” td exceeds the Kondo temperature TK. This makes
likely that the effects of T and td would be somewhat similar.
If this is the case, the intermediate values of td would be
related to the formation of a local moment in the equivalent
Anderson model of ISIM, and an intermediate LM regime
would take place between the SC regime for low values of td
and the PO regime for large values of td. This classification is
used in Ref. 14 for describing the effect of a magnetic field
in the zero-temperature limit of the Anderson model. How-
ever, we can only refer to the SC, LM and PO regimes, and
not to the SC, LM and PO fixed points. The RG flows of
ISIM yielded by increasing td at T=0 and by increasing T at
td=0 are very different. Increasing T in ISIM at td=0 yields
the 3 plateaus shown in Fig. 5, characteristic of 3 well-
defined fixed points. There are no free fermions between the
plateaus, since there are no ���T� such that EI�T�=�����T�
outside the plateaus. In contrast, Fig. 10 does not exhibit
plateaus and the EI�td� can be described by a continuum of
effective noninteracting spectra as td varies at T=0, and not
only by the three spectra of the SC, LM, and FO fixed points.

C. Interaction-independent conductance in the PO limit
(td� tc

�U)

As one increases td /�, g�td /�� eventually exhibits a fast
decay which is not given by a universal function of td /�. As
can be seen in Fig. 10, this fast decay corresponds to the
decay of g�td / tc

2� obtained without interaction, but shifted to
values of td /�, which increase when U increases. According
to Ref. 14, the Anderson model at T=0 is in a LM regime if
the magnetic field h lies in the interval TK�h�h�	�U�.
The upper threshold �U� appears in the Hartree-Fock study
made by Anderson24 of the transition from the non-magnetic
to the LM regime of the Anderson model, as one decreases T
without magnetic field. For ISIM, this suggests that the slow
universal decay of g�td /�� corresponding to the LM regime
persists as far as td� td

�	 tc
�U. Above td

�, ISIM should enter

in the PO regime. This is confirmed in Fig. 12, where one
can see that g becomes independent of U and behaves as
without interaction when td exceeds a threshold value td

�

�10�U�.

XI. CHARACTERISTIC ENERGY SCALE IN THE
PERTURBATIVE REGIME

Without interaction, Eq. �28� implies that g=1 if td= tc
2.

This yields for the characteristic energy scale � of ISIM a
non-interacting value tc

2. For weak values of U, there is a
perturbative regime where g and � can be obtained using
self-consistent Hartree-Fock theory. In the symmetric case,
the Hartree corrections and the site potentials VG cancel each
other since VG=−U /2. The value of the inter-site hopping td
is modified because of exchange and takes5 a value given by
the self-consistent solution of the HF equation,

v = td + U
c0
†c1�v,tc�� . �30�

Using Eq. �28� with v instead of td gives the HF value of g.
For the Anderson model, it is well known that HF theory

fails to describe the Kondo regime. This Kondo regime oc-
curs when the interaction exceeds a threshold value ��, ei-
ther for low-temperatures T�TK without magnetic field h, or
for weak fields h�TK at T=0. In the frame of the HF ap-
proximation, a magnetic moment should be formed, while it
actually vanishes because of strong correlations between the
conduction electrons and the impurity spin �Kondo effect�.
Therefore, one does not expect that HF theory should be
valid in the orbital Kondo regime of ISIM for large values of
U �U���� and small values of td if T=0.

For a large coupling tc=1, the results shown in Fig. 13
confirm this prediction: HF theory gives the correct value of
g for all values of td as far as U remains smaller than �tc

2. For
U��tc

2, the HF curves and the NRG curves coincide only
when td is large �td���, but become very different at the left
side of the transmission peak. For a small coupling tc=0.1,
one can see in Fig. 14 a more dramatic breakdown of HF
theory, which fails to give the peak of perfect transmission
�see the curves with U=0.04 and more notably U=0.05 of
Fig. 14�.
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FIG. 12. �Color online� Ratio g�U , tc , td� /g�U=0, tc , td� as a
function of td / �tc

�U�. g�U� is extracted from the NRG spectrum
and g�U=0� is given by Eq. �28�. One can see that g behaves as
without interaction when td� td

��10tc
�U. Same values of tc and U

as in Fig. 10.
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The origin of this failure can be simply explained. In the
perturbative regime where g is given by Eq. �28� with v
instead of td, g=1 if v= tc

2. This yields for the scale � a HF
value,

�HF = tc
2 − A�tc�U , �31�

where the function

A�tc� = 
c0
†c1�v = tc

2,tc�� , �32�

which is shown in Fig. 15, depends weakly on tc �A=1 /� if
tc=1 while A→1 /4 if tc→0�. When U reaches a value tc

2 /A,
HF theory predicts that the interaction should renormalize td
to a value �HF=0 for having g=1! This is absurd and con-
firms that HF theory breaks down for ISIM above an inter-
action threshold, which is essentially the same as for the
Anderson model �U����.

In the nonperturbative regime of the Anderson model, the
physical quantities such as the magnetization m must be uni-
versal functions of T /TK or h /TK. This means that � should
be related to the characteristic temperature TK of the orbital
Kondo effect yielded by the inversion symmetry of ISIM.

The relation between � and TK can be obtained using Friedel
sum rule and analytical results for the magnetization m�h� of
the Anderson model at zero temperature.

XII. IMPURITY OCCUPATION NUMBERS AND
SCATTERING PHASE SHIFTS

For having g, another method consists in using NRG for
calculating the average impurity occupation numbers 
ne/o�
of the even and odd orbitals of the nanosystem. The differ-
ence between the scattering phase shifts can be given in
terms of 
ne/o�, if one assumes an approximate form of the
Friedel sum rule �FSR�,

�e − �o � ��
ne� − 
no�� , �33�

and one gets an approximate value g̃ for g from this estimate
of �e−�o using Eq. �26�,

g̃ = sin2���
ne� − 
no��� . �34�

This approximate FSR is often used �see for instance Ref.
30� and allows us to obtain g from the zero temperature
impurity magnetization m�h� of the Anderson model with
magnetic field h. This is particularly interesting since m�h� is
a physical quantity for which exact results have been ob-
tained with the Bethe-Ansatz by Tsvelick and Wiegmann.
Unfortunately, Eq. �33� is only an approximation and not the
true FSR, as pointed out by Simon and Affleck in a study31

of persistent currents through a quantum dot at Kondo reso-
nance. The generalization of FSR by Langreth13,32 shows that
the phase shifts are proportional to the number of electrons
displaced by the impurity, “among which are included not
only the d electrons, but also some of the conduction elec-
trons.” For ISIM, this means that the displaced electrons are
not only those inside the interacting region, but displaced
electrons in the neighboring parts of the leads have to be
included too for obtaining the phase shifts from the occupa-
tion numbers via FSR. At first sight, one can expect that Eq.
�33� could be used only if the scattering region is weakly
coupled to the attached leads. Our results show that this is
less simple.

The difference between the values of g obtained directly
from the NRG spectra 
Eq. �27�� and the approximated val-
ues g̃ are given as a function of td for weak 
tc=0.1, Figs.
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FIG. 13. �Color online� Conductance g as a function of td for
tc=1 and U=0, 0.5, 1, 1.5, 2, 2.5, and 3. g extracted from the NRG
spectra �solid red curves� coincides with the HF estimates �dashed
green curves� when U� tc

2 or for td� tc
�U if U� tc
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FIG. 14. �Color online� Conductance g as a function of td for
tc=0.1 and U=0,0.01,0.02,0.03,0.04, and 0.05. The NRG results
�solid red curves� and the HF results �dashed green curves� coincide
for U� tc

2. For U=0.05, the HF curve gives only a small peak where
g�0.25, and not g=1.

1
4

0.275

0.3

1
π

A

0 0.2 0.4 0.6 0.8 1
tc

FIG. 15. Function A�tc� defined in Eq. �32� as a function of
tc.
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16�a� and 16�d�� and large values 
tc=1, Figs. 16�b� and
16�c�� of the coupling, and for weak 
Figs. 16�a� and 16�c��
or large values 
Figs. 16�b� and 16�d�� of U. Even for a weak
coupling tc=0.1, where one could expect a negligible dis-
placed charge outside the nanosystem, g̃=g only when ISIM
is near the SC fixed point �td���. When td��, g̃�g. For a
larger coupling �tc=1�, one can notice also differences be-
tween g and g̃ even when td�� in the perturbative regime
�U��tc

2�. One concludes that g can be obtained from g̃ with
a good accuracy only in the nonperturbative regime where
ISIM exhibits an orbital Kondo effect �U� tc

2 /A and td���.
Otherwise, the difference �e−�o is not given by the differ-
ence 
ne�− 
no� evaluated inside the nanosystem, but depends
also on the occupation numbers outside the nanosystem.

The validity of the approximate FSR in the nonperturba-
tive regime when td�� can be explained by the following
argument: the conduction electrons which are displaced to
screen the impurity pseudospin �forming a singlet state with
the impurity� are only a negligible fraction �TK /EF of the
conduction electrons. To neglect this fraction induces an er-
ror 	� / th which cannot be seen in the curves shown in Fig.
16 when � is very small �see Fig. 11�. When the system is not
in the orbital Kondo regime �U��tc

2 or td���, the number
of displaced electrons becomes much larger, and the differ-
ence between g and g̃ can be seen in Fig. 16.

XIII. ZERO TEMPERATURE MAGNETIZATION
OF THE SYMMETRIC ANDERSON MODEL

The exact solution of the Anderson model can be obtained
using Bethe-Ansatz. Tsvelick and Wiegmann have solved the
Bethe-Ansatz equations for the Anderson model in an arbi-
trary magnetic field. Let us summarize their results14,15

for the symmetric case, which were obtained assuming the
continuum limit and an infinite bandwidth �th→�� for an
Anderson impurity coupled to a 3D bath of noninteracting
electrons. Since the bath for ISIM is provided by noninter-

acting electrons free to move on a semi-infinite 1D tight-
binding lattice, and since we give results for values of tc, td,
and U which are not always small compared to th, one cannot
rule out certain quantitative differences between the results
of Refs. 14 and 15 and our numerical results. This may con-
cern the numerical prefactors in the expression of TK or the
constants in the universal functions describing the magneti-
zation m�h�. However, a qualitative agreement should be
expected. The Kondo temperature of the Anderson model
reads

TK = F�Utc
2 exp − ��U

8tc
2 � , �35�

where F is a prefactor, which depends on the definition of TK
�which varies14 from one author to another� and is modified33

if the bandwidth of the bath of conduction electrons is finite
or infinite. F=�2 /� for the infinite bandwidth Anderson
model,14,15 while F=0.364�2 /� if the bandwidth is taken
finite.33

When U�� �nonperturbative regime�, the Bethe-Ansatz
results for the impurity magnetization m�h� can be divided in
three characteristic regimes as the magnetic field h increases
at T=0.

A SC regime for low fields �h�TK� where the magneti-
zation is given by a universal function of h /TK,

m�h� =
h

2�TK
, �36�

followed by a LM regime for intermediate fields �Tk�h
��U�� where m�h� is given by another universal function of
h /TK which can be expanded as

m�h� �
1

2�1 −
1

ln� h

TK
� + . . .� , �37�

before having a PO regime for strong fields �h��U�� �de-
noted FO regime in Ref. 14� where

m�h� �
1

2
�1 −

2�

�h
+ . . .� �38�

becomes independent of the interaction U.
When U��, there is a direct transition from a nonmag-

netic regime where m�h��h /� toward the free-orbital re-
gime where the behavior of m�h� is given by Eq. �38�.

XIV. CHARACTERISTIC ENERGY SCALE
AND UNIVERSAL SCALING FUNCTIONS

In the perturbative regime �U��tc
2�, the conductance is

well described by HF theory, which yields g=4 / �v / tc
2

+ tc
2 /v�2 with v given by Eq. �30�. The scale � takes a value

�HF given by Eq. �31�.
In the nonperturbative regime �U��tc

2�, let us revisit our
numerical results for g using the exact expressions giving the
magnetization m�h� for an Anderson model �3D bath of con-
duction electrons, wide band limit where th→�� which is not
exactly the Anderson model corresponding to ISIM.
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FIG. 16. �Color online� Values of g obtained from the NRG
spectrum 
black solid lines, Eq. �27�� and approximate values
g̃ 
red dashed lines, Eq. �33��, as a function of td. Increasing
U moves the conductance peak toward the left side. �a�: tc=0.1
and U=0,0.01,0.02, . . . ,1. �b�: tc=1 and U=0,1 ,2 ,5 ,10.
�c�: tc=0.1 and U=0,0.05,0.1,0.15,0.2,0.25. �d�: tc=1 and
U=0,5 ,10,15, . . . ,55.
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The conductance g̃�td� reads

g̃�td� = sin2
2�m�td�� , �39�

where m�td� is the pseudomagnetization of the nanosystem
with pseudospin-1/2 and reads

m�td� =

ne�td�� − 
no�td��

2
. �40�

In the SC limit �td�TK� where g and g̃ coincide, this gives

g̃�td� = sin2�td/Tk� � � td

TK
�2

� g�td� , �41�

while the conductance g extracted from the NRG spectra
reads

g�td� = � 2

td/� + �/td
�2

� 4� td

�
�2

. �42�

This yields a relation between the characteristic scale � of
ISIM and the Kondo temperature TK of the Anderson model,

��U,tc
2� = 2TK�U,tc

2� . �43�

Using for TK Eq. �35� with the finite bandwidth prefactor
F=0.364�2 /� given in Ref. 33, one gets for � the analytical
expression

��U,tc� = 0.728�2tc
2U

�
exp − ��U

8tc
2 � . �44�

Equation �44� describes very well the numerical values of
��U , tc� obtained from the NRG spectra and the condition
g�td=��=1 in the nonperturbative regime, as shown in Fig.
11 for U� tc

2 /A. Moreover, the behavior of g calculated for
U=0.25 and tc=0.1 is given in Fig. 17 as a function of td
when td��. One can see that the expression g̃=sin2�2td /��
with the value of � calculated from Eq. �44� ��
=1.582510−6� describes the behavior of g or g̃ calculated
using the NRG algorithm when td��.

Figure 18 gives the NRG values of g and g̃ as a function
of td for U=0.25 and tc=0.1 in the LM regime. One can see
that g� g̃ around the transmission peak, but becomes slightly
different when td��. Using Eq. �37� for m�td�, the NRG
values of g̃�td� shown in Fig. 18 are not reproduced by
sin2
2�m�td��. We explain this failure by the fact that the
Anderson model corresponding to Eq. �37� is not exactly the
Anderson model corresponding to ISIM. This might give dif-
ferent constants in the function given in Eq. �37�. However,
we have been able to find a function of X= td /� inspired by
the form of m�h /TK� given in Eq. �37� and which fits very
well the values of g in the LM regime,

g�X� = sin2���2.0175 −
0.7388

ln�2.8573X��	 . �45�

As shown in Fig. 18, such a fit with the value of �=2TK used
in Fig. 17 allows us to describe g�td�. Equation �45� gives an
excellent approximation of the universal curve of g�td /�� in
the LM regime.

When td� tc
�U �PO regime�, g can be described by the

non-interacting expression 4�td / tc
2+ tc

2 / td�−2, which achieves
the complete description of g�td ,U , tC� in the symmetric case
by analytical expressions.

XV. SUMMARY AND PERSPECTIVE

When td��, we have shown that the quantum conduc-
tance is given by a universal function of the ratio X= td /� of
two energies. This universal function g�X�=4�X+X−1�−2

characterizes the non-interacting limit, where the isolated
nanosystem has two levels of energy VG� td with a level
spacing �=2td. Those levels have a width �= tc

2 when the
nanosystem is coupled to leads at EF=0. Therefore the ratio
X is also the ratio � /2�. We have found that g�X� remains
unchanged when the electrons interact inside the nanosys-
tem, if one adds a term 	U to the broadening � in the per-
turbative regime. When U becomes larger, there is a nonper-
turbative regime where a more complicated many-body
resonance appears at EF. In that case, the relation �=2TK
which we have obtained is consistent with the fact that the
width � of the nanosystem levels becomes the Kondo tem-
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FIG. 17. �Color online� SC regime: Values of g �red plus�, g̃
�green cross� obtained from the NRG algorithm and Bethe-Ansatz
expression sin2�2td /�� �solid line� as a function of td for U=0.25
and tc=0.1. The value of � used in the Bethe-Ansatz expression
have been obtained from the relation �=2TK, with TK given by Eq.
�44�.
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FIG. 18. �Color online� LM regime: NRG values of g �red plus�
and g̃ �green cross� as a function of td for U=0.25 and tc=0.1. The
solid line �fit Bethe-Ansatz� corresponds to Eq. �45� with the value
of �=2TK given by Eq. �44� and used in Fig. 17.
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perature TK. We have thus shown that the interaction U
leaves the function g�X� unchanged in the SC regime, renor-
malizing only the level broadening �.

To have a conductance which is given by the ratio of two
characteristic energies and which stays at zero temperature
on a universal curve when this ratio varies is reminiscent of
the scaling theory of localization.34 Recently, it has been
found35 using numerical quantum Monte Carlo simulations
that the ��g�-function characterizes not only the noninteract-
ing limit,34 but also 2D disordered systems with Coulomb
interactions. We have given another example of a universal
function, which remains unchanged when the electrons inter-
act, the interaction renormalizing only the characteristic scale
�� for the dimensionless ratio � /� in this study, the local-
ization length � for the dimensionless ratio L /� in 2D disor-
dered systems35�.

When �� td� tc
�U, a local moment is formed in the

equivalent Anderson model and the universal function g�X�
is not given by the noninteracting limit. Adapting an analyti-
cal expression describing the magnetization of the Anderson
model, we have proposed an analytical form, which repro-
duces the universal function g�X� in the LM regime.

We have shown that the interacting region becomes per-
fectly transparent when td=�. In the nonperturbative regime,
this corresponds to a nanosystem level spacing ��TK. This
result shown using ISIM is a particular illustration of the
minimal realization of the orbital Kondo effect in a quantum
dot with two leads, which has been studied by Silvestrov and
Imry36 for more general setups. The role in the conduction
electron spin is played by the lead index in Ref. 36, while it
is played by the even and odd orbitals for ISIM. In the two
cases, the Kondo effect takes place if there are two close
levels in a dot populated by a single electron, and the con-
ductance at T=0 is zero at the SU�2� symmetric point �td
=0 for ISIM�, while it reaches the unitary limit G=e2 /h for
some finite value �TK of the level splitting �. However, the
prediction made in Ref. 36, that for temperature T�TK the
conductance becomes maximal if the levels are exactly de-
generate, cannot be valid for ISIM where level degeneracy
means no coupling between the left and right leads �td=0�.

We have shown that the quantum conductance of an in-
teracting nanosystem coupled to noninteracting 1D leads can

be described with a universal function g�X�. This concept,
with a similar function g�X�, must remain valid if one
couples the nanosystem to noninteracting 2D or 3D leads
instead of strictly 1D leads. This can be understood if one
considers the Anderson models of pseudospin-1/2 particles
corresponding to ISIM with leads of dimension D. The
Kondo physics of such models, where the quantum impurity
is coupled to a bath of dimension D, is qualitatively indepen-
dent of the used bath. A change of the dimension of the leads
modifies only the dependence of the nanosystem level width
� upon tc ��	 tc

2 in all dimensions D, but with factors which
depend on D�, and hence the dependence of the Kondo tem-
perature upon tc. This makes likely that the universal aspects
of g obtained in a pure 1D limit using ISIM do characterize
also more general spinless models, where the nanosystem
and the leads would be created in gated 2D semiconductor
heterostructures. In that case, ISIM is a simplified model,
which could describe quantum transport of spin polarized
electrons through an inversion-symmetric double-dot setup,
as a function of the interdot coupling. Since such a coupling
can be easily varied if the two dots are coupled by a quantum
point contact, it will be interesting to check whether the
quantum conductance of such setup is given by a universal
function of the dimensionless interdot coupling td /TK when
T→0. For observing the orbital Kondo regime using such a
setup, a large capacitive interdot coupling will be necessary.
It will be also interesting to introduce the spin 1/2 of elec-
trons in ISIM for studying the role in td upon the SU�4�-
Kondo effect, as we have studied its role upon the SU�2�-
Kondo effect using spinless fermions. The possibility of
observing SU�4�-symmetric Fermi liquid state in a symmet-
ric double quantum dot system with strong capacitive inter-
dot coupling has been discussed in Ref. 27.

Eventually, this study was restricted to the symmetric
case, leaving to a following work the study of the asymmet-
ric case �EF�0, VG�−U /2�, where the role of td upon the
valence-fluctuation fixed point remains to be investigated.
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